Fungi

 

Fungi

Amanita muscaria (basidiomiceto), Sarcoscypha coccinea (ascomiceto),

moho negro del pan (zigomiceto),

quitridio, Penicillium.

Clasificación científica
Dominio: Eukarya
Reino: Fungi
L., 1753
Divisiones

En biología, el término Fungi (latín, literalmente “hongos”) designa un reino que incluye a los organismos celulares sin cloroplastos y por lo tanto heterótrofos que poseen paredes celulares compuestas por quitina y células con especialización funcional. Actualmente se consideran como un grupo heterogéneo, polifilético, formado por organismos pertenecientes por lo menos a tres líneas evolutivas independientes. La especialidad de la medicina y de la botánica que se ocupa de los hongos se llama micología, donde se emplea el sufijo -mycota para las divisiones y -mycetes para las clases.

Los hongos son organismos eucarióticos que realizan una digestión externa de sus alimentos, secretando enzimas, y que absorben luego las moléculas disueltas resultantes de la digestion. A esta forma de alimentación se le llama osmotrofia, la cual es similar a la que se da en las plantas, pero, a diferencia de aquéllas, los nutrientes que toman son orgánicos. Los hongos son los descomponedores primarios de la materia muerta de plantas y de animales en muchos ecosistemas, y como tales se ven comúnmente en alimentos en descomposición.

Dentro del esquema de los cinco reinos de Wittaker y Margulis, los hongos pertenecen en parte al reino protista (los hongos ameboides y los hongos con zoosporas) y al reino Fungi (el resto). En el esquema de ocho reinos de Cavalier-Smith pertenecen en parte al reino Protozoa (los hongos ameboides), al reino Chromista (los Pseudofungi) y al reino Fungi todos los demás.

Los hongos pueden formar simbiosis basadas en asociaciones con algas liquenes o con otro grupo en forma de micorrizas, los hongos acompañan a la mayor parte de las plantas, residiendo en sus raíces y ayudándolas a absorber nutrientes del suelo. Se piensa que esa simbiosis fue esencial para la conquista del medio terrestre por las plantas y para la existencia de los ecosistemas continentales.[1]

Los hongos tienen una gran importancia económica para los humanos: las levaduras son las responsables de la fermentación de la cerveza y el pan, y el cultivo de setas es una gran industria en muchos países.

9 Enlaces externos

Estructura

Partes de un hongo: (1) Hifa, (2) Conidióforo, (3) Fiálide, (4) Conidia, y (5) Septas

Los hongos unicelulares, aunque frecuentemente en la misma especie se observan fases de uno y otro tipo. Tienen una membrana plasmática (donde predomina el ergosterol en vez de colesterol), núcleo, cromosomas (los hongos son, por lo general, haploides), y orgánulos intracelulares. Aunque ningún hongo es estrictamente anaeróbico, algunos pueden crecer en condiciones anaeróbicas. La pared celular es rígida, con un componente polisacarídico, hecho de mananos, glucanos y quitina, asociado íntimamente con proteínas.

Los hongos se presentan bajo dos formas principales: hongos filetesmos (antiguamente llamados “mohos”) y hongos levaduriformes. El cuerpo de un hongo filamentoso tiene dos porciones, una reproductiva y otra vegetativa.[2] La parte vegetativa, que es haploide y generalmente no presenta coloración, está compuesta por filamentos llamados hifas (usualmente microscópicas); un conjunto de hifas conforma el micelio[3] (usualmente visible). A menudo las hifas están divididas por tabiques llamados septas.

Los hongos levaduriformes — o simplemente levaduras — son siempre unicelulares, de forma casi esférica. No existen en ellos una distinción entre cuerpo vegetativo y reproductivo.

Reproducción de los hongos

Los hongos se reproducen sobre todo por medio de esporas, las cuales se dispersan en un estado latente, que se interrumpe sólo cuando se hallan condiciones favorables para su germinación. Cuando estas condiciones se dan, la espora germina, surgiendo de ella una primera hifa, por cuya extensión y ramificación se va constituyendo un micelio. La velocidad de crecimiento de las hifas de un hongo es verdaderamente espectacular: en un hongo tropical llega hasta los 5 mm por minuto. Se puede decir, sin exagerar, que algunos hongos se pueden ver crecer bajo los propios ojos.

Las esporas de los hongos se producen en esporangios, ya sea asexualmente o como resultado de un proceso de reproducción sexual. En este último caso la producción de esporas es precedida por la meiosis de las células, de la cual se originan las esporas mismas. Las esporas producidas a continuación de la meiosis se denominan meiosporas. Como la misma especie del hongo es capaz de reproducirse tanto asexual como sexualmente, las meiosporas tienen una capacidad de resistencia que les permite sobrevivir en las condiciones más adversas, mientras que las esporas producidas asexualmente cumplen sobre todo con el objetivo de propagar el hongo con la máxima rapidez y con la mayor extensión posible.

El micelio vegetativo de los hongos, o sea el que no cumple con las funciones reproductivas, tiene un aspecto muy simple, porque no es más que un conjunto de hifas dispuestas sin orden. La fantasía creativa de los hongos se manifiesta sólo en la construcción de cuerpos fructíferos, los cuales, como indica el nombre, sirven para portar los esporangios que producen las esporas.

Orden de caracteres para la identificación en hongos

A los hongos se les trata desde la antigüedad como vegetales, por la inmovilidad y la presencia de pared celular, a pesar de que son heterótrofos. Esto significa que son incapaces de fijar carbono a través de la fotosíntesis, pero usan el carbono fijado por otros organismos para su metabolismo. Actualmente se sabe que los hongos son más cercanos al reino animal (Animalia) que al reino vegetal (Plantae), y se sitúan junto con los primeros en un taxón monofilético, dentro del grupo de los opistocontos.

Durante la mayor parte de la era paleozoica, los hongos al parecer fueron acuáticos. El primer hongo terrestre apareció, probablemente, en el período silúrico, justo después de la aparición de las primeras plantas terrestres, aunque sus fósiles son fragmentarios. Los hongos de mayor altura que se conocen se desarrollaron hace 350 millones de años, es decir, en el período devónico y correspondían a los llamados protaxites, que alcanzaban los 6 m de altura. Quizás la aparición, poco tiempo después, de los primeros árboles provocó por competencia evolutiva la desaparición de los hongos altos.

A diferencia de los animales, que ingieren el alimento, los hongos lo absorben, y sus células tienen pared celular. Debido a estas razones, estos organismos están situados en su propio reino biológico, llamado Fungi.

Los hongos forman un grupo monofilético, lo que significa que todas las variedades de hongos provienen de un ancestro común. El origen monofilético de los hongos se ha confirmado mediante múltiples experimentos de filogenética molecular; los rasgos ancestrales que comparten incluyen la pared celular quitinosa y la heterotrofia por absorción, así como otras características compartidas.

La taxonomía de los hongos está en un estado de rápida modificación, especialmente debido a artículos recientes basados en comparaciones de ADN, que a menudo traslocan las asunciones de los antiguos sistemas de clasificación.[4] No hay un sistema único plenamente aceptado en los niveles taxonómicos más elevados y hay cambios de nombres constantes en cada nivel, desde el nivel de especie hacia arriba y, según el grupo, también a nivel de especie y niveles inferiores. Hay sitios en Internet como Index Fungorum, ITIS y Wikispecies que registran los nombres preferidos actualizados (con referencias cruzadas a sinónimos antiguos), pero no siempre concuerdan entre sí o con los nombres en la Wikipedia o en cada variante idiomática.

Pese al carácter monofilético o de un ancestro común, los hongos presentan una sorprendente variabilidad morfológica, dada no sólo por el aspecto sino por las dimensiones y características. Así, son hongos los protaxites de 6 m de altura, también lo son los mohos y levaduras, las setas (nombre que se da con precisión a los hongos macroscópicos comestibles que crecen sobre el suelo), las subterráneas trufas o los casi microscópicos, como el oidio o los de la tiña u otras micosis (ptiriasis, etcétera), la roya
La asociación simbiótica de hongos con algas da lugar a los líquenes.

Clasificación clásica de los hongos

Flammulina velutipes

Los grupos de la enumeración anterior hasta Oomycota (incluido) no son verdaderos hongos, sino protistas con distintos parentescos cuyas adaptaciones hicieron confundirlos con hongos.

Clasificación actual del reino de los hongos (2010)

Caracteres diferenciales

Detallaremos las de la seta tipo, en forma de paraguas, que tienen pie y sombrero.

  • Sombrero

Tamaño, forma, consistencia, espesor, margen, cutícula, carne.

  • Himenio

Láminas, tubos, poros, aguijones, pliegues.

  • Pie

Forma, dimensión, color, consistencia, anillo, volva, cortina, micelio.

  • Esporada

Color

  • Olor

Anís, almendra amarga, ajo, gas de alumbrado, tinta o fenol, jabón.

  • Sabor

Dulce, acre o picante, amargo

Lugares húmedos y con poca luz.

Funcion de la pared celular del hongo

1. Proteger al hongo de la lisis osmótica y de metabolítos tóxicos 2. Tener permeabilidad a nutrientes,gases y enzimas

Utilidad de los hongos

Hongos ornamentales

Por la belleza que guardan los hongos, muchos se han usado con un fin estético y ornamental, incluyéndoselos en ofrendas que, acompañados con flores y ramas, son ofrecidas en diversas ceremonias. En la actualidad todavía es fácil encontrar esta costumbre en algunos grupos étnicos de México, como son la náhuatl en la sierra de PueblaTlaxcala; los zapotecas en Oaxaca y los tzotziles y tojalabale en Chiapas. Los hongos que destacan entre los más empleados con este fin son los hongos psilocibios y la Amanita muscaria; esta última se ha convertido en el estereotipo de seta por lo altamente llamativa que es, ya que está compuesta por un talo blanco y una sombrilla (basidiocarpo) roja, moteada de color blanco.

Hongos alimenticios

Quizás el primer empleo directo que se les dio a los hongos es el de alimento. Mucho se ha discutido sobre el valor nutritivo de ellos, si bien es cierto a la mayoría se les puede considerar con elevada calidad porque contienen una buena proporción de proteínas y vitaminas y escasa cantidad de carbohidratos y lípidos. Dentro de los más consumidos tenemos: Boletus edulis, Lactarius deliciosus, Russula brevipes y Amanita caesarea. Otros hongos que se consumen notablemente son: Agaricus campestris y A. bisporus, en nuestro medio vulgarmente conocidos como “champiñones” u “hongos de París”; la importancia de éstos se debe a que son de las pocas especies que pueden cultivarse artificialmente y de manera industrial.

Los hongos microscópicos también han invertido directa o indirectamente para la creación de fuentes alimenticias y representan una expectativa de apoyo para el futuro; en este campo cabe citar los trabajos de obtención de biomasa, a partir de levaduras como Candida utilis, que se usa para mejorar el alimento forrajero.

El crecimiento de diversos hongos incluidos sobre algunos alimentos pueden elevar el nivel nutricional de éstos; por ejemplo, en los estados de Tabasco y Chiapas, se consume una bebida fermentada a base de maíz molido, que se le conoce popularmente con el nombre de “pozol”, hay estudios realizados que indican que al aumentar los días de fermentación de éste, se incrementa la forma micrológica, proporcionando principalmente sobre todo aminoácidos y proteínas.

Hongos enteógenos (alucinógenos)

Los hongos enteógenos cobran particular importancia en Mesoamérica, debido a que se encuentran ampliamente distribuidos. Al igual que con los individuos del género Claviceps, los hongos alucinógenos como los hongos psilocibios han sido utilizados últimamente por la industria farmacéutica para la extracción de productos con fines psicoterapéuticos (psilocibinas y psilocinas) y también algunas especies del reino monera. Algunos hongos reportados como tóxicos son en realidad enteógenos. Los hongos mágicos fueron popularizados en el mundo por el investigador Gordon Wasson y la célebre sacerdotisa mazateca.

Hongos medicinales

Desde el descubrimiento por Fleming de la penicilina como un metabolito del mecanismo antagónico que tienen los hongos contra otros microorganismos, se ha desarrollado una gran industria para el descubrimiento, separación y comercialización de nuevos antibióticos. Entre las especies medicinales más importantes podemos citar el Ganoderma lucidum, el Trametes versicolor (o Coriolus v.), el Agaricus blazei, Cordyceps sinensis y el Grifola frondosa, entre muchos otros.

Hongos contaminantes

Los hongos contaminantes resultan un grave problema para el hombre; dentro de las setas cabe mencionar las que parasitan y pudren la madera, como Coniophara o las comúnmente denominadas “orejas”. Sin embargo, el mayor perjuicio se obtiene de los hongos microscópicos, sobresaliendo los [mohos]que pueden atacar y degradar.

Hongos venenosos

En la naturaleza, sólo ciertas variedades de hongos son comestibles, el resto son tóxicos por ingestión pudiendo causar severos daños multisistémicos e incluso la muerte. La Micología tiene estudios detallados sobre estas variedades de hongos. Es muy importante tomar en serio lo antes dicho.

Especies como la Amanita phalloides, Cortinarius orellanus, Amanita muscaria, Chlorophyllum molybdites, Galerina marginata o la Lepiota helveola debido a sus enzimas tóxicas para el ser humano causan síntomas como: taquicardias, vómitos y cólicos dolorosos, sudor frío, exceso de sed y caídas bruscas de la presión arterial, excreciones sanguinolientas. La víctima contrae graves lesiones necróticas en todos los órganos especialmente en el hígado y el riñón. Estos daños son muchas veces irreparables y se requiere transplante de órganos por lo general.

El reconocimiento de estos hongos requiere adquirir el reconocimiento visual de la morfología de los hongos venenosos. No existe ninguna regla general valida para su reconocimiento, la única forma es conocerlos y reconocerlos.

Como tratamiento ambulatorio a aplicar si se sospecha el consumo de hongos venenosos es provocar la inmediata expulsión mediante vómitos de la víctima y dar el llamado Antídoto universal, llevar al afectado a urgencia médica antes de las 4 horas de haberlos consumido para atención de extrema urgencia.

Galería de hongos venenosos

Amanita phalloides

Amanita pantherina

Amanita muscaria

 

Boletus satanas

Amanita virosa

Mallorca fungus

Paxillus involutus

Russula emetica

Micocultura

El cultivo de los hongos se llama micocultura, y se practica por su interés económico o científico. En el primer caso se trata por ejemplo de especies comestibles de géneros como Agaricus o Pleurotus, o de especies saprotróficas que producen sustancias alopáticas (antibióticos) (como la penicilina, producida por hongos del género penicilium). Las levaduras son importantes en la producción de alimentos o bebidas fermentadas, especialmente las del género Saccharomyces, y también como organismos modelo en la investigación biológica.

Es posible cultivar o dejar que prosperen mohos para su estudio en casa o en la escuela. Sobre el pan humedecido crece pronto un micelio de Rhizopus, que forma esporangios globosos y oscuros; y en la cáscara de los cítricos se desarrolla enseguida Penicilium, con sus características esporas verdeazuladas. Los hongos generalmente se desarrollan mejor en la semi oscuridad y en ambientes húmedos.

Sin embargo, es recomendable hacer estos estudios bajo la supervisión de un micólogo o especialista ya que hay mohos altamente peligrosos.

La mayoría de investigadores Virus

Para otros usos de este término, véase Virus (desambiguación).

?

Virus


Virus de la influenza
Clasificación científica
Grupos
I: Virus ADN bicatenario
II: Virus ADN monocatenario
III: Virus ARN bicatenario
IV: Virus ARN monocatenario positivo
V: Virus ARN monocatenario negativo
VI: Virus ARN monocatenario retrotranscrito

VII: Virus ADN bicatenario retrotranscrito

Un virus (del latín virus, “toxina” o “veneno“) es una entidad infecciosa microscópica que sólo puede multiplicarse dentro de las células de otros organismos. Los virus infectan todos los tipos de organismos, desde animales y plantas hasta bacterias y arqueas. Los virus son demasiado pequeños para poder ser observados con la ayuda de un microscopio óptico, por lo que se dice que son submicroscópicos. El primer virus conocido, el virus del mosaico del tabaco, fue descubierto por Martinus Beijerinck en 1899,[1] [2] y actualmente se han descrito más de 5.000, si bien algunos autores opinan que podrían existir millones de tipos diferentes.[3] [4] Los virus se hallan en casi todos los ecosistemas de la Tierra y son el tipo de entidad biológica más abundante.[4] [5] El estudio de los virus recibe el nombre de virología, una rama de la microbiología.

A diferencia de los priones y viriones, los virus se componen de dos o tres partes: Su material genético, que porta la información génica, que puede ser ADN o de ARN, una cubierta proteica que protege a estos genes (llamada cápside), y en algunos también podemos encontrar una bicapa lipídica que los rodea cuando se encuentran fuera de la célula (denominada envoltura vírica). Los virus varían en su forma, desde simples helicoides o icosaedros hasta estructuras más complejas. El origen evolutivo de los virus aún es incierto, algunos podrían haber evolucionado a partir de plásmidos (fragmentos de ADN que se mueven entre las células), mientras que otros podrían haberse originado desde bacterias. Además, desde el punto de vista de la evolución de otras especies, los virus son un medio importante de transferencia horizontal de genes, la cual incrementa la diversidad genética.

Los virus se diseminan de muchas maneras diferentes y cada tipo de virus tiene un método distinto de transmisión. Entre estos métodos se encuentran los vectores de transmisión, que son otros organismos que los transmiten entre portadores. Los virus vegetales se propagan frecuentemente por insectos que se alimentan de su savia, como los áfidos, mientras que los virus animales se suelen propagar por medio de insectos hematófagos. Por otro lado, otros virus no precisan de vectores: El virus de la gripe (rinovirus) se propaga por el aire a través de los estornudos y la tos y los norovirus son transmitidos por vía fecal-oral, o a través de las manos, alimentos y agua contaminados. Los rotavirus se extienden a menudo por contacto directo con niños infectados. El VIH es uno de los muchos virus que se transmiten por contacto sexual o por exposición con sangre infectada.

No todos los virus provocan enfermedades, ya que muchos virus se reproducen sin causar ningún daño al organismo infectado. Algunos virus como el VIH pueden producir infecciones permanentes o crónicas cuando el virus continúa replicándose en el cuerpo evadiendo los mecanismos de defensa del huésped. En los animales, sin embargo, es frecuente que las infecciones víricas produzcan una respuesta inmunitaria que confiere una inmunidad permanente a la infección. Los microorganismos como las bacterias también tienen defensas contra las infecciones víricas, conocidas como sistemas de restricción-modificación. Los antibióticos no tienen efecto sobre los virus, pero se han desarrollado medicamentos antivirales para tratar infecciones potencialmente mortales.

La palabra proviene del latín virus, que hace referencia al veneno o alguna sustancia nociva, usada por primera vez en 1392. Virulento, del latín virulentus (venenoso), data del 1400. La mención de “agente que causa enfermedades infecciosa” se usó por primera vez en 1728, antes del descubrimiento de los virus por Dmitri Ivanovski en 1892. El adjetivo “viral” data de 1948. El término “virión” también se utiliza para referirse a una única partícula vírica infecciosa. El plural es “virus”.

 

 

Historia

Martinus Beijerinck en su laboratorio en 1921.

En 1884, el microbiólogo francés Charles Chamberland inventó un filtro (conocido actualmente como filtro Chamberland o filtro Chamberland-Pasteur) que tiene poros de tamaño inferior a la de una bacteria. Así pues, podía hacer pasar por el filtro una solución con bacterias y eliminarlos completamente de la misma. El biólogo ruso Dmitri Ivanovski utilizó este filtro para estudiar lo que actualmente se conoce como virus del mosaico del tabaco. Sus experimentos demostraron que los extractos de hojas molidas de plantas de tabaco infectadas todavía eran infecciosos después de filtrarlos. Ivanovski sugirió que la infección podría ser causada por una toxina producida por las bacterias, pero no continuó apoyando esta idea. Entonces se creía que todos los agentes infecciosos podían ser retenidos por filtros y cultivados en un medio con nutrientes —esta opinión formaba parte de la teoría germinal de las enfermedades. En 1899, el microbiólogo neerlandés Martinus Beijerinck repitió los experimentos y quedó convencido de que se trataba de una nueva forma de agente infeccioso. Observó que el agente sólo se multiplicaba dentro de células en división, pero como sus experimentos no mostraban que estuviera compuesto de partículas, la llamó contagium vivum fluidum (“germen viviente soluble”) y reintroducir el término “virus”. Beijerinck mantenía que los virus eran de naturaleza líquida, una teoría más tarde descartada por Wendell Stanley, que demostró que eran particulados. El mismo año, en 1899, Friedrich Loeffler y Frosch pasaron el agente de la fiebre aftosa (el aftovirus) por un filtro similar y descartaron la posibilidad de una toxina debido a la alta dilución; llegaron a la conclusión de que el agente se podía replicar.

A principios del siglo XX, el bacteriólogo inglés Frederick Twort descubrió los virus que infectaban bacterias, que actualmente se denominan bacteriófagos,[ y el microbiólogo franco Félix de Herelle describió virus que, cuando se les añadía en bacterias cultivadas en agar, producían zonas de bacterias muertas. Diluyó con precisión una suspensión de estos virus y descubrió que las diluciones más altas, en lugar de matar todas las bacterias, formaban zonas individuales de organismos muertos. Contando estas zonas, y multiplicándoseles por el factor de dilución, De Herelle pudo calcular el número de virus en dicha zona.

A finales del siglo XIX, los virus eran definidos en términos de su infectividad, filtrabilidad, y su necesidad de huéspedes vivientes. Los virus sólo habían sido cultivados en plantas y animales. En 1906, Harrison inventó un método para cultivar tejidos en linfa, y, en 1913, E. Steinhardt, C. Israeli y R. A. Lambert utilizaron este método para cultivar virus Vaccinia en fragmentos de tejido corneal de cobaya. En 1928, H. B. Maitland y M. C. Maitland cultivaron virus Vaccinia en suspensiones de riñones picados de gallina. Su método no fue adoptado ampliamente hasta 1950, cuando se empezó a cultivar poliovirus a gran escala para la producción de vacunas.

Otro avance se produjo en 1931, cuando el patólogo estadounidense Ernest William Goodpasture cultivó el virus de la gripe y otros virus en huevos fertilizados de gallina. En 1949, John F. Enders, Thomas Weller y Frederick Robbins cultivaron virus de la polio en células cultivadas de embriones humanos, siendo la primera vez que se cultivaba un virus sin utilizar tejidos animales sólidos o huevos. Este trabajo permitió a Jonas Salk crear una vacuna efectiva contra la polio.

Con la invención de la microscopía electrónica en 1931 por parte de los ingenieros alemanes Ernst Ruska y Max Knoll, se obtuvieron las primeras imágenes de virus. En 1935, el bioquímico y virólogo estadounidense Wendell Stanley examinó el virus del mosaico del tabaco y descubrió que estaba compuesto principalmente de proteínas. Poco tiempo después, el virus fue separado en sus partes de proteínas y de ARN. El virus del mosaico del tabaco fue uno de los primeros en ser cristalizados, y por tanto, la primera estructura que pudo ser observada en detalle. Las primeras imágenes por difracción de rayos X del virus cristalizado fueron obtenidas por Bernal y Fankuchen en 1941. Basándose en sus imágenes, Rosalind Franklin descubrió la estructura completa del virus en 1955. El mismo año, Heinz Fraenkel-Conrat y Robley Williams demostraron que el ARN purificado del virus del mosaico del tabaco y sus proteínas de envoltura pueden parecerse por sí solos, formando virus funcionales, sugiriendo que este mecanismo sencillo era probablemente como se parecían los virus en las células huéspedes.

La segunda mitad del siglo XX fue la edad dorada del descubrimiento de virus, y la mayoría de las 2.000 especies reconocidas de virus animales, vegetales y bacterianos fueron descubiertas durante estos años. En 1957, se descubrieron el arterivirus equino y la causa de la diarrea vírica bovina (un pestivirus). En 1963, el virus de la hepatitis B fue descubierto por Baruch Blumberg, y en 1965, Howard Temin describió el primer retrovirus. La transcriptasa inversa, enzima clave que utilizan los retrovirus para convertir su ARN en ADN, fue descrita originalmente en 1970, de manera independiente por Howard Temin y David Baltimore. En 1983, el equipo de Luc Montagnier del Instituto Pasteur de Francia aisló por primera vez el retrovirus actualmente llamado VIH.

Origen

Se pueden encontrar virus en todas partes donde haya vida, y probablemente existen desde la aparición de las primeras células. Su origen es incierto, puesto que no fosilizan, de manera que sólo se puede especular a partir de diferentes técnicas y ensayos de biología molecular. Estas técnicas dependen de la disponibilidad de ADN o ARN vírico antiguo, pero desgraciadamente la mayoría de virus que han sido preservados y almacenados en laboratorios tienen menos de 90 años.[30] [31] Hay tres teorías principales sobre el origen de los virus:

  • Teoría de la regresión: Es posible que los virus fueran pequeñas células que parasitaban células más grandes. A lo largo del tiempo, los genes que no necesitaban por su parasitismo desaparecieron. Las bacterias Rickettsia y Chlamydia son células vivientes que, como los virus, sólo pueden reproducirse dentro de células huéspedes. El ejemplo de estas bacterias parece apoyar esta teoría, pues es probable que su dependencia del parasitismo haya causado la pérdida de los genes que les permitían sobrevivir fuera de una célula. También se le llama “teoría de la degeneración”.
  • Teoría del origen celular (también llamada “hipótesis del nomadeo” o vagrancy hypothesis): Algunos virus podrían haber evolucionado de fragmentos de ADN o ARN que “escaparon” de los genes de un organismo mayor. El ADN fugitivo podría haber provenido de plásmidos (fragmentos de ADN que pueden moverse entre células) o transposones. Estos son moléculas de ADN que se replican y se mueven a diferentes posiciones en el interior de los genes de la célula. Antiguamente llamados “genes saltarines”, son ejemplos de elementos móviles genéticos y podrían ser el origen de algunos virus. Los transposones fueron descubiertos en granos de maíz en 1950 por Barbara McClintock.
  • Teoría de la coevolución: Los virus podrían haber evolucionado de complejas moléculas de proteínas y ácido nucleico, al mismo tiempo que aparecieron las primeras células en la Tierra, y habrían sido dependientes de la vida celular durante muchos millones de años. Los viroides son moléculas de ARN que no son clasificadas como virus porque carecen de envoltura proteica. Sin embargo, tienen características comunes a diversos virus y a menudo se les llama agentes subvíricos. Los viroides son importantes patógenos de las plantas. No codifican proteínas, pero interactúan con la célula huésped y la utilizan para replicarse y producir sus proteínas. El virus de la hepatitis D de los humanos tiene un genoma de ARN similar al de los viroides pero tiene un envoltorio proteico derivado del virus de la hepatitis B y no puede producir uno propio. Por lo tanto, es un virus defectuoso que no puede replicarse sin la ayuda del virus de la hepatitis B. De la misma forma, el virófago ‘sputnik’ es dependiente del mimivirus, el cual infecta a Acanthamoeba castellanii. Estos virus que dependen de otras especies víricas reciben el nombre de satélites, y podrían representar estadios evolutivos intermedios entre los viroides y los virus.

Los priones son moléculas proteicas infecciosas que no contienen ni ADN ni ARN. En las ovejas, causan una infección llamada tembladera ovina, y en el ganado vacuno causan encefalopatía espongiforme bovina (la “enfermedad de las vacas locas”). En los humanos, causan kuru y la enfermedad de Creutzfeldt-Jakob. Son capaces de replicarse pues algunas proteínas pueden existir en dos formas diferentes y los priones cambian la forma normal de una proteína huésped en la forma del prión. Esto inicia una reacción en cadena en la que cada proteína priónica convierte muchas proteínas del huésped en más priones, y estos priones convierten a su vez aún más proteínas en priones. Aunque son fundamentalmente diferentes de los virus y los viroides, su descubrimiento da credibilidad a la teoría de que los virus podrían haber evolucionado de moléculas autoreplicadoras.

El análisis informático de secuencias de ADN de los virus y los huéspedes está produciendo una mejor comprensión de las relaciones evolutivas entre diferentes virus y podría ayudar a identificar los antepasados de los virus modernos. En la actualidad, estos análisis no han ayudado a decidir cuál (o cuáles) de las teorías es correcta. Sin embargo, parece improbable que todos los virus actualmente conocidos compartan un antepasado común y probablemente los virus han aparecido múltiples veces en el pasado por medio de uno o más mecanismos, con lo cual, podrían ser correctas todas ellas.

Microbiología

Propiedades de vida

Existen opiniones dispares sobre si los virus son una forma de vida o estructuras orgánicas que interactúan con los seres vivos. Por ello algunos autores se refieren a ellos como “organismos al límite de la vida” Por una parte se asemejan a los organismos que tienen genes y evolucionan por selección natural, y se reproducen creando múltiples copias de sí mismos para autoensamblarse. Sin embargo, carecen de estructura celular, lo cual es considerado la unidad básica de la vida. Además, los virus no tienen un metabolismo propio, y necesitan una célula huésped para crear nuevos productos. Por tanto, no se pueden reproducir en el exterior de una célula huésped (aunque bacterias como Rickettsia y Chlamydia son considerados organismos vivos a pesar de tener la misma limitación). Las formas de vida aceptadas utilizan la división celular para reproducirse, mientras que los virus aparecen de forma súbita y en gran cantidad dentro de las células, lo que es análogo al crecimiento autónomo de los cristales. El autoensamblaje de los virus dentro de las células tiene implicaciones para el estudio del origen de la vida, pues refuerza las hipótesis de que la vida podría haber comenzado en forma de moléculas orgánicas autoensamblantes.

Estructura

Diagrama de cómo se puede construir una cápside vírica a partir de múltiples copias de sólo dos moléculas proteicas.

Los virus presentan una amplia diversidad de formas y tamaños, llamadas “morfologías“. Son unas 100 veces más pequeños que las bacterias. La mayoría de virus estudiados tienen un diámetro de entre 10 y 300 nanómetros. Algunos Filovirus tienen un tamaño total de hasta 1.400 nm, sin embargo, sólo miden unos 80 nm de diámetro.[ La mayoría de virus no pueden ser observados con un microscopio óptico, de manera que se utilizan microscopios electrónicos de barrido y de transmisión para visualizar partículas víricas.[ Para aumentar el contraste entre los virus y el trasfondo se utilizan tinciones densas en electrones. Son soluciones de sales de metales pesados como wolframio, que dispersan electrones en las regiones cubiertas por la tinción. Cuando las partículas víricas están cubiertas por la tinción (tinción positiva), oscurecen los detalles finos. La tinción negativa evita este problema, tiñendo únicamente el trasfondo.

Una partícula vírica completa, conocida como virión, consiste en ácido nucleico rodeado por una capa de protección proteica llamada cápside. Las cápsides están compuestas de subunidades proteicas idénticas llamadas capsómeros. Los virus tienen un “envoltorio lipídico” derivado de la membrana celular del huésped. La cápside está formada por proteínas codificadas por el genoma vírico, y su forma es la base de la distinción morfológica. Las subunidades proteicas codificadas por los virus se autoensamblan para formar una cápside, generalmente necesitando la presencia del genoma viral. Sin embargo, los virus complejos codifican proteínas que contribuyen en la construcción de su cápside. Las proteínas asociadas con los ácidos nucleicos son conocidas como nucleoproteínas, y la asociación de proteínas de la cápside vírica con ácidos nucleicos víricos recibe el nombre de nucleocápside. En general, hay cuatro tipos principales de morfología vírica:

Diagrama de la estructura del virus del mosaico del tabaco: el ARN viral está enrollado en la hélice formada por subunidades proteicas repetidas.

Helicoidal

Las cápsides helicoidales se componen de un único tipo de capsómero apilado alrededor de un eje central para formar una estructura helicoidal que puede tener una cavidad central o un tubo hueco. Esta formación produce viriones en forma de barra o de hilo, pueden ser cortos y muy rígidos, o largos y muy flexibles. El material genético, normalmente ARN monocatenario, pero a veces ADN monocatenario, queda unido a la hélice proteica por interacciones entre el ácido nucleico con carga negativa y la carga positiva de las proteínas. En general, la longitud de una cápside helicoidal está en relación con la longitud del ácido nucleico que contiene, y el diámetro depende del tamaño y la distribución de los capsómeros. El bien estudiado virus del mosaico del tabaco es un ejemplo de virus helicoidal.

Icosaédrica

La mayoría de virus que infectan los animales son icosaédricos o casi-esféricos con simetría icosaédrica. Un icosaedro regular es la mejor manera de formar una carcasa cerrada a partir de subunidades idénticas. El número mínimo requerido de capsómeros idénticos es doce, cada uno compuesto de cinco subunidades idénticas. Muchos virus, como los rotavirus, tienen más de doce capsómeros y parecen esféricos, manteniendo esta simetría. Los ápices de los capsómeros están rodeados por otros cinco capsómeros y reciben el nombre de pentones. Las caras triangulares de éstos también se componen de otros seis capsómeros y reciben el nombre de hexones.

El virus del Herpes tiene una envoltura lípida.

Envoltura

Algunas especies de virus se envuelven en una forma modificada de una de las membranas celulares, o bien es la membrana externa que rodea una célula huésped infectada, o bien membranas internas como la membrana nuclear o el retículo endoplasmático, consiguiendo así una bicapa lipídica exterior conocida como envoltorio vírico. Esta membrana es rellenada de proteínas codificadas por el genoma vírico y el del huésped, la membrana lipídica en sí y todos los carbohidratos presentes son codificados completamente por el huésped. El virus de la gripe y el VIH utilizan esta estrategia. La mayoría de virus envueltos dependen de la envoltura para infectar.

Complejos

Los virus tienen una cápside que no es ni puramente helicoidal, ni puramente icosaédrica, y que puede poseer estructuras adicionales como colas proteicas o una pared exterior compleja. Algunos bacteriófagos (como el Fago T4) tienen una estructura compleja que consiste en un cuerpo icosaédrico unido a una cola helicoidal (esta cola actúa como una jeringa molecular, atacando e inyectando el genoma del virus a la célula huésped), que puede tener una base hexagonal con fibras caudales proteicas que sobresalgan.

Los poxvirus son virus grandes y complejos con una morfología inusual. El genoma vírico está asociado con proteínas dentro de una estructura discal central conocida como nucleoide. El nucleoide está rodeado por una membrana y dos cuerpos laterales de función desconocida. El virus tiene una envoltura exterior con una espesa capa de proteína en la superficie. La partícula en general es ligeramente pleomorfa, con una forma que puede ir de la de un huevo a la de un ladrillo. Mimivirus es el virus más grande conocido, con un diámetro en su cápside de 400 nm. De su superficie se proyectan filamentos proteicos de 100 nm. La cápside, tomada en microscopio electrónico, tiene una forma hexagonal, de manera que es probablemente icosaédrica.

Algunos virus que infectan a las Archaeas tienen estructuras inusuales, como su tamaño y su base. De igual manera, algunos bacteriófagos pueden tener diferentes estructuras en cuanto a su cola, con formas algo raras con respecto a otros virus.

Genoma

Diversidad del genoma de los virus
Propiedad Parámetros
Ácido nucleico
  • ADN
  • ARN
  • Ambos AND y ARN (Tanto ADN como ARN)
Forma
  • Lineal
  • Circular
  • Segmentada
Cadenas
  • Monocatenarias
  • Bicatenarias
  • Bicatenarias con regiones monocatenarias
Sentido
  • Sentido positivo (+)
  • Sentido negativo (−)
  • Ambos sentidos (+/−)

Se puede ver una enorme variedad de estructuras genómicas entre las especies de virus, como grupo, contienen una diversidad genómica superior a la de los reinos enteros de las plantas, los animales o las bacterias. Hay millones de diferentes tipos de virus; y únicamente alrededor de 5.000 de ellos han sido descritos detalladamente. Un virus tienen compuestos o bien de ADN o de ARN, y reciben respectivamente los nombres de virus ADN y virus ARN. La gran mayoría de virus utilizan el ARN. Los virus de las plantas tienden a tener ARN monocatenario y los bacteriófagos tienden a tener ADN bicatenario.

Los genomas víricos son o circulares, como los polyomaviridae o lineales, como los adenoviridae. El tipo de ácido nucleico es irrelevante para la forma del genoma. En los virus ARN, el genoma a menudo está dividido en partes separadas dentro del virión, y se le califica de “segmentado”. Cada segmento suele codificar una proteína y los segmentos suelen estar reunidos en una cápside. No es necesario que cada segmento se encuentre en el mismo virión porque el virus en general es infeccioso, como lo demuestra el Brome mosaic virus.

Poco importa el tipo de ácido nucleico, un genoma vírico puede ser o bien monocatenario o bicatenario. Los genomas monocatenarios consisten en un ácido nucleico no emparejado, similar a la mitad de una escalera de mano cortada por la mitad. Los virus bicatenarios consisten en dos ácidos nucleicos emparejados complementarios, similares a una escalera de mano entera. Algunos virus, como los Hepadnaviridae, contienen un genoma que es parcialmente bicatenario y parcialmente monocatenario.

En los virus ARN o los virus ADN monocatenarios, las cadenas pueden ser o bien positivas (cadenas plus) o negativas (cadenas minus), dependiendo de si son complementarias en el ARN mensajero (ARNm) vírico. El ARN viral positivo es idéntico al ARNm viral y por tanto puede ser traducido inmediatamente por la célula huésped. El ARN viral negativo es complementario del ARNm y por tanto debe ser convertido en ARN positivo por una ARN polimerasa antes de ser traducido. La nomenclatura del ADN es similar a la del ARN, en cuanto a la “cadena codificadora” del ARNm vírico que le es complementaria (-), y la “cadena no codificadora” que es una copia (+).

El tamaño del genoma varía mucho entre especies. Los genomas víricos más pequeños sólo codifican cuatro proteínas y pesan unos 106 daltons; los más grandes pesan unos 108 daltons y codifican más de un centenar de proteínas. Los virus ARN suelen tener genomas más pequeños que los virus ADN debido a una tasa de error más alta a la hora de replicarse, y tienen un límite superior de tamaño. Por encima de este límite, los errores en la replicación del genoma hacen que el virus sea inofensivo o incluso, incompetente. Para compensar esto, los virus ARN a menudo inician un proceso de segmentación en el que el genoma es separado en moléculas más pequeñas, reduciendo así las posibilidades de error. En cambio, los virus ADN tienen genomas mayores gracias a la elevada fidelidad de sus enzimas de replicación.

El cambio antigénico puede resultar en cepas nuevas y altamente patógenas de gripe humana.

Los virus sufren cambio genético por diversos mecanismos. Estos incluyen un proceso llamado deriva genética en que bases individuales del ADN o el ARN mutan en otras bases. La mayoría de estas mutaciones puntuales son imperceptibles pues la proteína que codifica el gen no cambia, pero aún así, puede conferir ventajas evolutivas como resistencia a los medicamentos antivíricos.[70] El cambio antigénico se produce cuando hay un cambio significativo en el genoma del virus. Esto ocurre como resultado de una recombinación genética. Cuando esto se produce en los virus de la gripe, pueden resultar pandemias.[71] Los virus ARN suelen existir como quasiespecies o en enjambres de virus de la misma especie pero con secuencias de nucleósidos del genoma ligeramente diferentes. Estos grupos son un objetivo destacado por la selección natural.[72]

Los genomas segmentados ofrecen ventajas evolutivas; diferentes cepas de un virus con el genoma segmentado pueden intercambiar y combinar genes, produciendo virus progenénicos (o descendientes) con características únicas. Esto recibe el nombre de “sexo vírico”.

La recombinación genética es el proceso por el cual una cadena de ADN es rota y luego unida al extremo de una molécula de ADN diferente. Esto se puede producir cuando diferentes virus infectan las mismas células al mismo tiempo, y estudios de la evolución de los virus han demostrado que la recombinación tiene un papel muy importante en las especies estudiadas. La recombinación es común en los virus ARN y ADN.

Ciclo de los virus

  • La penetración sigue a la adhesión; los virus se introducen en la célula huésped mediante endocitosis mediada por receptores o por fusión de membrana. Esto recibe a menudo el nombre de penetración vírica. La infección de las células vegetales es diferente a la de las células animales. Las plantas tienen una pared celular rígida hecha de celulosa y los virus sólo pueden entrar en las células cuando se produce un trauma en la pared celular.[77] Los virus como el virus del mosaico del tabaco también pueden moverse directamente a las plantas, entre células, a través de poros llamados plasmodesmos.[78] Las bacterias, como las de las plantas, tienen una fuerte pared celular que los virus tienen que romper para infectar la célula. Algunos virus han evolucionado mecanismos para inyectar su genoma a la célula bacteriana mientras la cápside viral permanece en el exterior.
  • El despojo es el proceso en que la cápside vírica es degradada por enzimas virales o del huésped, liberando así el ácido nucleico del genoma vírico.
  • La replicación implica la síntesis de ARN mensajero (ARNm) vírico en todos los virus con rasgos de ARN positivos, la síntesis de proteínas víricas, el ensamblaje de proteínas víricas y la replicación del genoma viral.
  • Tras el ensamblaje de partículas víricas, a menudo se produce una modificación postraduccional de las proteínas víricas. En virus como el VIH, esta modificación (a veces llamada “maduración”), se produce después de que el virus haya sido liberado de la célula huésped.
  • Los virus son liberados de la célula huésped por lisis—un proceso que mata la célula reventando su membrana. Los virus envueltos (como el VIH) son liberados de la célula huésped por gemación. Durante este proceso, el virus adquiere su envoltura, que es una parte modificada de la membrana plasmática del huésped.

El material genético y el método por el cual los virus se replican, varían entre los diferentes tipos.

Virus ADN 

La replicación del genoma de la mayoría de virus ADN se produce en el núcleo de la célula. Si la célula tiene el receptor adecuado a la superficie, estos virus entran por fusión con la membrana celular o por endocitosis. La mayoría de virus ADN son completamente dependientes de la maquinaria de síntesis de ADN y ARN de la célula huésped, y su maquinaria de procesamiento de ARN. El genoma vírico debe atravesar la membrana nuclear de la célula para acceder a esta maquinaria.

Virus ARN 

Los virus ARN son únicos porque su información genética está codificada en ARN. La replicación se suele producir en el citoplasma. Los virus ARN se pueden clasificar en unos cuatro grupos según su modo de replicación. La polaridad del ARN (si puede ser utilizado directamente o no para producir proteínas) determina en gran medida el mecanismo de replicación, y si el material genético es monocatenario o bicatenario. Los virus ARN utilizan sus propias ARN replicases para crear copias de su genoma.

Virus ADN bicatenario retrotranscrito 

Los virus de transcripción inversa se replican mediante la transcripción inversa, que es la formación de ADN a partir de una plantilla de ARN. Los virus de transcripción inversa que contienen un genoma de ARN utilizan un intermedio de ADN para replicarse, mientras que los que contienen un genoma de ADN utilizan un intermedio de ARN durante la replicación del genoma. Ambos tipos utilizan lap. 88–89</ref>

Efectos en la célula huésped

La variedad de efectos estructurales y bioquímicos de los virus sobre las células huésped es grande. Reciben el nombre de “efectos citopáticos”.La mayoría de infecciones víricas acaban provocando la muerte de la célula huésped, entre cuyas causas están la lisis de la célula, las alteraciones de la membrana superficial de la célula y la apoptosis. A menudo, la muerte de la célula es causada por el paro de sus actividades normales debido a la supresión por proteínas específicas del virus, que no son todas componentes de la partícula vírica.

Algunos virus no causan cambios aparentes en la célula infectada. Las células en que los virus es latente e inactivo presentan pocos signos de infección y a menudo funcionan normalmente. Esto causa infecciones persistentes y el virus a menudo permanece durmiente durante muchos meses o años. Este suele ser el caso del herpes simple. Algunos virus, como el virus de Epstein-Barr, a menudo hacen proliferar las células sin causar malignidad, pero otros, como los papilomavirus, son una causa demostrada de cáncer.

Clasificación

Las clasificaciones intentan describir la diversidad de virus dándoles nombre y agrupándolos según sus semejanzas. En 1962, André Lwoff, Robert Horne y Paul Tournier fueron los primeros en desarrollar una forma de clasificación de los virus, basada en el sistema jerárquico linneano.[92] Este sistema basa la clasificación en filos, clases, órdenes, familias, géneros y especies. Los virus fueron agrupados según sus propiedades compartidas (no las de sus huéspedes) y el tipo de ácido nucleico del que se compone su genoma.[93] Posteriormente se formó Comité Internacional de Taxonomía de Virus.

Clasificación del ICTV

El Comité Internacional de Taxonomía de Virus (ICTV) desarrolló el sistema de clasificación actual y escribió pautas que daban más importancia a ciertas propiedades de los virus para mantener la uniformidad familiar. Un sistema universal para clasificar los virus y una taxonomía unificada han sido establecidos desde 1966. El 7 º Informe del ICTV formalizó por primera vez el concepto de especie vírica como el taxón más bajo de una jerarquía ramificada de taxones de virus. Sin embargo, actualmente sólo se ha estudiado una pequeña parte de toda la diversidad de los virus, y análisis de muestras obtenidas de humanos revelan que aproximadamente un 20% de secuencias víricas recuperadas no han sido observadas anteriormente. Muestras del ambiente, como sedimentos marinos y oceánicos, revelan que la gran mayoría de secuencias son completamente nuevas

La estructura general de la taxonomía es la siguiente:

Order (-virales)

Familia (-viridae)

Subfamilia (-virinae)

Género (-virus)

Especie (-virus)

La taxonomía actual del ICTV (2008) reconoce cinco órdenes: los caudovirales, los herpesvirales, los mononegavirales, los nidovirales y los picornavirales. El comité no distingue formalmente entre subespecies, cepas y aislamientos. En total, hay cinco órdenes, 82 familias, 11 subfamilias, 307 géneros, 2.083 especies y unos 3.000 tipos que aún no han sido clasificados.[96] [97]

Clasificación Baltimore [editar] 

Esquema de la clasificación Baltimore de los virus.

El biólogo ganador del Premio Nobel David Baltimore diseñó el sistema de clasificación de Baltimore.[26] [98] El sistema de clasificación del ICTV es utilizado en combinación con el sistema de clasificación de Baltimore en la clasificación moderna de los virus.[99] [100] [101]

La clasificación de Baltimore de los virus se basa en el mecanismo de producción de ARNm. Los virus deben generar ARNm de su genoma para producir proteínas y replicarse, pero cada familia de virus utiliza mecanismos diferentes. El genoma de los virus puede ser monocatenario (ss) o bicatenario (ds), de ARN o ADN, y pueden utilizar o no la transcriptasa inversa. Además, los virus ARN monocatenarios pueden ser o positivos (+) o negativos (-). Esta clasificación reparte los virus en siete grupos:

Como ejemplo de la clasificación vírica, el virus de la varicela, varicela zoster (VZV), pertenece al orden de los herpesvirales, la familia de los Herpesviridae, la subfamilia de los Alphaherpesvirinae y el género Varicellovirus. El VZV se encuentra en el grupo I de la clasificación de Baltimore porque es un virus ADN bicatenario que no utiliza la transcriptasa inversa.

Virus y enfermedades humanas

Artículo principal: Anexo:Virus importantes en la clínica

Representación de las principales infecciones víricas y las principales especies involucradas en éstas.[102] [103]

Ejemplos de enfermedades humanas comunes provocadas por virus incluyen el resfriado, la gripe, la varicela y el herpes simple. Muchas enfermedades graves como el ébola, el SIDA, la gripe aviar y el SARS son causadas por virus. La capacidad relativa de los virus de provocar enfermedades se describe en términos de “virulencia”. Otras enfermedades están siendo investigadas para descubrir si su agente causante también es un virus, como la posible conexión entre el herpesvirus humano 6 (HHV6) y enfermedades neurológicas como la esclerosis múltiple y el síndrome de fatiga crónica.[104] Actualmente existe un debate sobre si el bornaviridae, antiguamente considerado la causa de enfermedades neurológicas en los caballos, podría ser la causa de enfermedades psiquiátricas en los humanos.[105]

Los virus tienen diferentes mecanismos mediante los cuales causan enfermedades a un organismo, que dependen en gran medida en la especie de virus. Los mecanismos a nivel celular incluyen principalmente la lisis de la célula, es decir, la ruptura y posterior muerte de la célula. En los organismos pluricelulares, si mueren demasiado células del organismo en general comenzará a sufrir sus efectos. Aunque los virus causan una disrupción de la homeostasis saludable, provocando una enfermedad, también pueden existir de manera relativamente inofensiva en un organismo. Un ejemplo sería la capacidad del virus del herpes simple de permanecer en un estado durmiente dentro del cuerpo humano. Esto recibe el nombre de “latencia”[106] y es una característica de todos los herpesvirus, incluyendo el virus de Epstein-Barr (que causa mononucleosis infecciosa) y el virus de la varicela zoster (que causa la varicela). Las infecciones latentes de varicela pueden generarse posteriormente en la etapa adulta del ser humano en forma de la enfermedad llamada herpes zóster.[107] Sin embargo, estos virus latentes algunas veces suelen ser beneficiosos, incrementando la inmunidad del cuerpo contra algunos seres patógenos, como es el caso del Yersinia pestis.[108] Cuando alguna enfermedad viral vuelve a reincidir en cualquier etapa de la vida se conoce popularmente como culebrilla.

Algunos virus pueden causar infecciones permanentes o crónicas, en que los virus continúan replicándose en el cuerpo a pesar de los mecanismos de defensa del huésped.[109] Esto es habitual en las infecciones de virus de la hepatitis B y de la hepatitis C. Los enfermos crónicos son conocidos como portadores, pues sirven de reservorio de los virus infecciosos.[110] En poblaciones con una proporción elevada de portadores, se dice que la enfermedad es endémica.[111] Algunos virus pueden mutar dentro de las células huéspedes, reforzando sus defensas contra diversos antivirales, proceso conocido como mutación.[112]

Epidemiología

La epidemiología viral es la rama de la ciencia médica que estudia la transmisión y el control de infecciones víricas en los humanos. La transmisión de virus puede ser vertical (de madre a hijo) u horizontal (de una persona a otra). Ejemplos de transmisión vertical incluyen el virus de la hepatitis B o el VIH, en que el bebé ya nace infectado con el virus.[113] Otro ejemplo más raro es el virus de la varicela zóster. Normalmente causa infecciones relativamente leves en los humanos, pero puede resultar fatal para los fetos y los bebés recién nacidos.[114] La transmisión horizontal es el mecanismo de contagio de virus más extendido. La transmisión puede ser por intercambio de sangre o por el cambio de fluidos en la actividad sexual (ej., VIH, hepatitis B y hepatitis C), por la boca por el intercambio de saliva (ej., virus de Epstein-Barr), por alimentos o agua contaminados (ej., norovirus), por la respiración de virus en forma de aerosol (ej., virus de la gripe) o por insectos vectores como los mosquitos (ej., dengue o malaria). La tasa y la velocidad de la transmisión de infecciones víricas dependen de factores como la densidad de población, el número de individuos susceptibles (los que no son inmunes),[115] la calidad del sistema sanitario y el tiempo.[116]

La epidemiología se utiliza para romper la cadena de infecciones en poblaciones durante brotes de enfermedades víricas.[117] Se utilizan medidas de control basándose en el conocimiento del modo de transmisión del virus. Una vez identificado el virus, a veces se puede romper la cadena de infecciones por medio de vacunas. Cuando no se puede contar con vacunas, pueden resultar eficientes el saneamiento y la desinfección. A menudo se aíslan las personas infectadas del resto de la comunidad, y los que han estado expuestos al virus son puestos en cuarentena.[118] Para controlar el brote de fiebre aftosa en bovinos británicos en 2001, se sacrificaron miles de cabezas de ganado.[119] La mayoría de infecciones víricas de los humanos y otro animales tienen un periodo de incubación durante el cual la infección no causa ningún signo o síntoma.[120] Los períodos de incubación de las enfermedades víricas van desde unos varios días hasta semanas, pero son conocidos en el caso de muchas infecciones.[121] Tras el periodo de incubación hay un “periodo de comunicabilidad”, un tiempo durante el cual el individuo o animal infectado es contagioso y puede infectar otra persona o animal.[122] Este periodo también es conocido en muchas infecciones, y el conocimiento de la longitud de ambos periodos es importante en el control de brotes.[123] Cuando un brote causa una proporción inusualmente elevada de infecciones en una población, comunidad o región, se le llama epidemia. Si un brote se extiende en todo el mundo se le llama pandemia.

Epidemias y pandemias

Reconstrucción del tenebroso virus de la gripe española que llegó a matar a cerca del 5% de la población humana entre 1918 y 1919. Es considerada la más grave pandemia en toda la historia de la humanidad.

Artículos principales: Gripe española, Pandemia de gripe A (H1N1) de 2009 en México y SIDA

Artículos principales: Virus de Ébola y Varicela

Las poblaciones amerindias fueron devastadas por enfermedades contagiosas, especialmente la viruela, llevada a América por los colonos europeos. Es incierto el número de nativos americanos muertos por enfermedades extranjeras después de la llegada de Colón a América, pero se ha estimado que fue el 70% de la población indígena. Los estragos causados por esta enfermedad contribuyeron significativamente a los intentos de los europeos de ahuyentar o conquistar la población nativa.[125] [126] [127] [128] [129] [130] [131] Una pandemia es una epidemia global. La pandemia de gripe de 1918, a menudo llamada gripe española, fue una pandemia de gripe de categoría 5 provocada por un virus de la gripe A inusualmente grave y mortal. Las víctimas a menudo eran adultos jóvenes sanos, en contraste con la mayoría de brotes de gripe, que afectan predominantemente pacientes juveniles, grandes o débiles. La pandemia de gripe española duró de 1918 a 1919. Las estimaciones más antiguas dicen que mató entre 40 y 50 millones de personas, mientras que las más recientes sugieren que podría haber muerto hasta 100 millones de personas, o un 5% de la población mundial en 1918.

La mayoría de investigadores creen que el VIH se originó en el África subsahariana durante el siglo XX;[135] y actualmente es una pandemia, con un número estimado de 38,6 millones de enfermos en todo el mundo.[136] El Programa Conjunto de las Naciones Unidas sobre el VIH/SIDA (UNAIDS) y la Organización Mundial de la Salud (OMS) estiman que el SIDA ha matado a más de 25 millones de personas desde que fue reconocida por primera vez el 5 de junio de 1981, siendo una de las epidemias más destructivas de la historia. En 2007 hubo 2,7 millones de infecciones con VIH y dos muertes relacionadas con este virus.

Algunos patógenos víricos muy letales son miembros de la familia de los Filoviridae. Los Filovirus son virus similares a filamentos que causan la fiebre hemorrágica vírica, e incluyen el Ébola y los virus de Marburg. El virus de Marburg atrajo la atención de la prensa en abril de 2005 por un brote en Angola. El brote, que comenzó en 2004 y se extendió en 2005, fue la peor epidemia del mundo de cualquier tipo de fiebre hemorrágica vírica.

Cáncer

Los virus son una causa establecida de cáncer en los humanos y otras especies. Los cánceres virales son demasiado raros y sólo ocurren de unas cuantas personas (o animales). Los virus que producen cáncer pueden provenir de muchas familias, tanto de ADN como de ARN, y no únicamente del “oncovirus” (un término obsoleto para referirse a los retrovirus). El desarrollo del cáncer puede deberse a gran cantidad de factores como la debilidad inmunitaria del huésped y mutaciones en éste. Los virus más importantes asociados con cánceres humanos son el papilomavirus humano, el virus de la hepatitis B, el virus de Epstein-Barr, y el virus T-linfotrópico humano. El más reciente descubrimiento de un virus que cause cáncer es el poliomavirus (Merkel cell polyomavirus) que es la causa de un raro cáncer de piel denominado carcinoma de células de Merkel.

 Los virus de la hepatitis pueden causar una infección crónica que provoca cáncer de hígado. La infección con virus T-linfotrópico humano puede causar paraparesia espástica tropical y leucemia de linfocitos T del adulto.[145] Los papilomavirus humanos son una causa establecida de cáncer de cérvix, piel, ano y pene.[146] Dentro de los Herpesviridae, el human herpesvirus 8 causa sarcoma de Kaposi y linfoma de las cavidades corporales, y el virus de Epstein-Barr causa linfoma de Burkitt, enfermedad de Hodgkin, trastorno linfoproliferativo de los linfocitos B y carcinoma nasofaríngeo.[147] El Merkel cell poliomavirus está estrechamente relacionado con el SV40 y con los poliomavirus del ratón que han sido usados como modelos de animales para los virus del cáncer desde hace 50 años.[148]

Respuesta inmune del huésped

La primera línea de defensa del organismo contra los virus es el sistema inmunitario innato. Esté incluye las células y otros mecanismos que defienden al organismo de la infección de una forma no específica. Esto significa que las células del sistema innato reconocen y responden a los agentes patógenos de una manera genérica, pero, a diferencia del sistema inmune adaptativo, no confieren protección de larga duración o inmunidad.

El ARN interferente es una importante defensa innata contra los virus. Muchos virus tienen una estrategia de replicación que implica ARN bicatenario (dsRNA). Cuando tales virus infectan a una célula y liberan su molécula o moléculas de ARN, inmediatamente una proteína compleja denominada dicer se une al ARN y lo corta en pedazos más pequeños. Una vía bioquímica denominada complejo RISC se activa y degrada el ARNm viral. Los rotavirus evitan este mecanismo no desnudándose completamente dentro de la célula. El dsRNA genómico continúa protegido en el interior del núcleo del virión y se liberan los nuevos ARNm producidos a través de los poros de la cápside.

Dos rotavirus; el primero está cubierto por antibióticos que impiden su reproducción y que ataque la célula huésped.

Cuando el sistema inmunitario adaptativo de un vertebrado encuentra un virus, produce anticuerpos específicos que se unen al virus y lo hacen no infeccioso, lo que se denomina inmunidad humoral. Dos tipos de anticuerpos son importantes. El primero se denomina IgM y es altamente eficaz para neutralizar los virus, pero sólo es producido por las células del sistema inmune durante unas pocas semanas. El segundo, denominado IgG, se produce indefinidamente. La presencia de IgM en la sangre del huésped se utiliza para determinar una infección aguda, mientras que el IgG indica una infección en el pasado Los dos tipos de anticuerpos se analizan cuando se llevan a cabo las pruebas de inmunidad.

Una segunda línea de defensa de los vertebrados frente a los virus se denomina inmunidad celular y consiste en las células inmunitarias conocidas como linfocitos T. Las células del organismo constantemente muestran cortos fragmentos de sus proteínas en la superficie celular. Si un linfocito T reconoce en una célula un fragmento sospechoso de ser viral, destruye dicha célula y a continuación se produce una proliferación de los linfocitos T específicos para ese virus. Los macrófagos son las células especialistas en la presentación antigénica. La producción de interferón es un importante mecanismo que interviene también en la defensa.

No todas las infecciones por virus producen de esta manera una respuesta inmune protectora. El VIH evade al sistema inmunológico por el cambio constante de la secuencia de aminoácidos de las proteínas en la superficie del virión. Estos persistentes virus eluden el control mediante el secuestro y bloqueo de la presentación antigénica, resistencia a las citoquinas, evasión a las actividades de los lifocitos T, inactivación de la apoptosis, y el cambio antigénico.[158] Otros virus, denominados “virus neurotróficos”, se propagan en el sistema neural, donde el sistema inmunológico puede ser incapaz de llegar a ellos.

Prevención

Dado que los virus utilizan la maquinaria de una célula huésped para reproducirse y residen en el interior, son difíciles de eliminar sin matar la célula huésped. Los enfoques médicos más eficientes para enfrentarse a las enfermedades víricas conocidos hasta ahora son las vacunas, que ofrecen resistencia a la infección, y los antivirales.

Vacunas

Artículo principal: Vacunación

La vacunación es una forma barata y eficaz para la prevención de las infecciones causadas por los virus. Las vacunas se han utilizado para prevenir las enfermedades virales desde mucho antes al descubrimiento de los virus. Su uso ha dado lugar a una dramática disminución de la morbilidad (enfermedad) y mortalidad (muerte) asociada a infecciones virales como poliomielitis, sarampión, paperas y rubéola. La viruela ha sido erradicada. En la actualidad se dispone de vacunas para prevenir más de trece infecciones virales en los seres humanos, y algunas más se utilizan para prevenir infecciones virales en animales.

Las vacunas pueden consistir en virus vivos atenuados o en virus muertos, o en sólo las proteínas virales (antígenos). Las vacunas vivas contienen formas debilitadas del virus que causa la enfermedad. Las vacunas vivas pueden ser peligrosas cuando se administran a las personas inmunodeficientes, puesto que en estas personas incluso el virus debilitado puede causar la enfermedad original. Sin embargo, la vacuna contra el virus de la fiebre amarilla, obtenida de una cepa atenuada denominada 17D, es posiblemente una de las vacunas más seguras y eficaces fabricadas.

La biotecnología y las técnicas de ingeniería genética se utilizan para producir vacunas de subunidades. Estas vacunas usan sólo la cápside de proteínas del virus. La vacuna de la hepatitis B es un ejemplo de este tipo de vacuna. Las vacunas de subunidades son seguras para pacientes inmunodeficientes, ya que no pueden causar la enfermedad.

Medicamentos antivirales

Artículo principal: Antiviral

El fármaco antiviral zidovudina (AZT), análogo de la timidina.

El primer fármaco que se presentó como agente antiviral verdaderamente selectivo y con éxito fue el aciclovir. Durante los últimos veinte años, el desarrollo de fármacos antivirales continuó aumentado rápidamente, impulsado por la epidemia del SIDA. Los medicamentos antivirales son a menudo «análogos de nucleósidos» (falsos nucleósidos, los bloques de construcción de los ácidos nucleicos) que los virus incorporan a sus genomas durante la replicación. El ciclo de vida del virus entonces se detiene debido a que las nuevas cadenas de ADN sintetizadas son defectuosas. Esto se debe a que los análogos carecen de los grupos hidroxilos que junto a los átomos de fósforo forman los enlaces de la fuerte “columna vertebral” de la molécula de ADN. A esto se le denomina interrupción de la cadena de ADN. Ejemplos de análogos de nucleósidos son el aciclovir para tratar el virus del herpes y lamivudina para las infecciones de VIH y hepatitis B. Aciclovir es uno de los fármacos antivirales más antiguos y frecuentemente prescritos.

Guanosina.

El fármaco antiviral aciclovir, análogo de la guanosina.

La hepatitis C es causada por un virus ARN. En el 80% de las personas infectadas, la enfermedad es crónica y sin tratamiento continúan siendo infecciosas para el resto de sus vidas. Sin embargo, ahora existe un tratamiento efectivo con el fármaco ribavirina, un análogo de nucleósido, en combinación con interferón. Actualmente se está desarrollando una estrategia similar con lamivudina para el tratamiento de los portadores crónicos de hepatitis B. Otros fármacos antivirales en uso tienen como objetivo diferentes etapas del ciclo replicativo viral. El VIH depende de una enzima proteolítica denominada proteasa VIH-1 para ser plenamente infeccioso. Existe una clase de medicamentos denominados inhibidores de la proteasa que han sido diseñados para inactivar esta enzima.

Infección en otras especies

Los virus infectan todo tipo de vida celular y, aunque los virus existen en todo el mundo, cada especie celular tiene un grupo de virus específico, que a menudo sólo infectan esta especie. Los virus son importantes patógenos del ganado. Enfermedades como la fiebre aftosa y la lengua azul son causadas por virus. Los animales de compañía (como perros, gatos y caballos), si no se les vacuna, son susceptibles a infecciones víricas graves. El parvovirus canino es causado por un pequeño virus ADN y las infecciones a menudo son fatales en los cachorros. Como todos los invertebrados, la abeja de la miel es susceptible a muchas infecciones víricas. Afortunadamente, la mayoría de virus coexisten de manera inofensiva con su huésped y no causan signos o síntomas de enfermedad.

Plantas

Hay muchos tipos de virus de las plantas, pero a menudo sólo causan una pérdida de producción, y no es económicamente viable intentar controlarlos. Los virus de las plantas a menudo son transmitidos de una planta a otra por organismos conocidos como vectores. Normalmente son insectos, pero también se ha demostrado que algunos hongos, nemátodos y organismos unicelulares son vectores. Cuando se considera económico el control de infecciones por fitovirus (en los frutos perennes, por ejemplo), los esfuerzos se concentran en matar a los vectores y eliminar huéspedes alternativos como malas hierbas.[177] Los fitovirus son inofensivos para los humanos y demás animales, pues sólo se pueden reproducir en células vegetales vivas.

Las plantas tienen mecanismos de defensa elaborados y eficientes contra los virus. Uno de los más eficientes es la presencia de los llamados genes de resistencia (R). Cada gen R confiere resistencia a un virus determinado desencadenando zonas localizadas de muerte celular alrededor de la célula infectada, que se pueden ver a simple vista en forma de manchas grandes. Esto detiene la expansión de la infección La interferencia del ARN también es una defensa efectiva en las plantas. Cuando están infectadas, las plantas a menudo producen desinfectantes naturales que matan los virus, como el ácido salicílico, el óxido nítrico y moléculas reactivas de oxígeno.

Bacterias

Artículo principal: Bacteriófago

Los bacteriófagos son un grupo extremadamente común y diverso de virus. Por ejemplo, los bacteriófagos son la forma más común de entidad biológica en los medios acuáticos; en los océanos hay hasta diez veces más de estos virus que de bacterias, alcanzando niveles de 250 millones de bacteriófagos por milímetro de agua marina. Estos virus infectan bacterias específicas uniéndose a moléculas receptoras de superficie y entrando en la célula. En un periodo corto de tiempo (en algunos casos en unos minutos), las polimerasas bacterianas empiezan a traducir ARN vírico en proteína. Estas proteínas se convierten en nuevos viriones dentro de la célula, proteínas colaboradoras que ayudan a parecerse nuevos viriones, o proteínas implicadas en la lisis celular. Los enzimas víricos colaboran en la destrucción de la membrana celular y, en el caso del fago T4, un poco más de veinte minutos después de la inyección ya se pueden liberar más de 300 fagos.

El mecanismo principal por el que las bacterias se defienden de los bacteriófagos es produciendo enzimas que destruyen el ADN ajeno. Estas enzimas, llamadas endonucleases de restricción, fragmentan el ADN vírico que los bacteriófagos introducen en las células bacterianas. Las bacterias también tienen un sistema que utiliza secuencias CRISPR para retener fragmentos del genoma de virus que se han encontrado en el pasado, lo que les permite impedir la replicación del virus mediante una forma de interferencia del ARN. Este sistema genético proporciona a las bacterias una inmunidad adquirida a las infecciones.

Archaea

Algunos virus se replican dentro de los arqueas, se trata de virus ADN que parecen no tener relación con ninguna otra forma de virus y que tienen una variedad de formas inusuales, como botellas, barras con un gancho o incluso lágrimas. Estos virus han sido estudiados en mayor detalle en los termófilos, en particular los órdenes Sulfolobales y Thermoproteales.[4] [67] La defensa contra estos virus pueden incluir la interferencia del ARN de secuencias de secuencias repetidas de ADN del genoma arqueobacterial que están relacionadas con los genes de los virus.

Aplicaciones

Ciencias de la vida y medicina

Los virus son importantes para el estudio de la biología molecular y celular, pues son sistemas sencillos que se pueden utilizar para manipular e investigar el funcionamiento de las células. El estudio y el uso de los virus ha ofrecido información valiosa sobre aspectos de la biología celular. Por ejemplo, los virus han resultado útiles en el estudio de la genética y han contribuido a comprender los mecanismos básicos de la genética molecular, como la replicación del ADN, la transcripción, la maduración del ARN, la traducción, el transporte de proteínas y la inmunología.

Los genetistas a menudo utilizan virus como vectores para introducir genes en células que están estudiando. Esto es útil para hacer que la célula produzca una sustancia ajena, o para estudiar el efecto de la introducción de un nuevo gen en el genoma. A este proceso se le denomina transducción. De manera similar, la viroterapia utiliza virus como vectores para tratar diversas enfermedades, pues pueden dirigirse específicamente a células y al ADN. Tiene un uso prometedor en el tratamiento del cáncer y en la terapia génica. Científicos del este de Europa han utilizado la terapia fágica como alternativa a los antibióticos desde hace un tiempo, y el interés por este enfoque está creciendo debido al alto nivel de resistencia a los antibióticos observado actualmente en algunas bacterias patógenas.

Materiales científicos y nanotecnología

Las tendencias actuales en nanotecnología prometen hacer un uso mucho más versátil de los virus. Desde el punto de vista de un científico de materiales, los virus pueden ser considerados nanopartículas orgánicas. Su superficie porta herramientas específicas diseñadas para cruzar las barreras de la célula huésped. El tamaño y la forma de los virus, así como el número y la naturaleza de los grupos funcionales de su superficie, están definidos con precisión. Por tanto, los virus son utilizados habitualmente en ciencia de materiales como carcasas de modificaciones de superficie unidas de forma covalente. Una cualidad particular de los virus es que pueden ser diseñados por evolución dirigida. Las técnicas potentes desarrolladas por las ciencias de la vida están siendo la base de enfoques de ingeniería hacia los nanomateriales, abriendo una gran variedad de usos mucho más allá de la biología y la medicina.

Debido a su tamaño, forma y estructuras químicas bien definidas, los virus han sido utilizados como moldes para organizar materiales a nanoescala. Ejemplos recientes incluyen el trabajo hecho en el Naval Research Laboratory de Washington D. C., utilizando partículas del Cowpea mosaic virus (CPMV) para amplificar señales en sensores basados en chips de ADN. En este uso, las partículas víricas separan las tinciones fluorescentes utilizadas con el fin de evitar la formación de dímeros no fluorescentes que actúen como extintores. Otro ejemplo es el uso del CPMV como nanoplaca de pruebas para moléculas electrónicas.

Armas

Artículo principal: Bioterrorismo

La capacidad de los virus de causar epidemias devastadoras en las sociedades humanas ha levantado la preocupación que se puedan convertir en armas biológicas. La preocupación aumentó después de que se consiguiera recrear el infame virus de la gripe española en un laboratorio. El virus de la viruela devastó numerosas sociedades a lo largo de la historia antes de ser erradicado. Actualmente sólo existe en varios laboratorios seguros en diversos lugares del mundo, pero los temores que pueda ser utilizado como arma no están totalmente infundados; la vacuna de la viruela no es segura —durante los años anteriores a la erradicación de la viruela, cayó más gente gravemente enferma como resultado de la vacunación que por la propia viruela, — y la vacunación para la viruela ya no es practicada universalmente. Por este motivo, gran parte de la población humana actual casi no tiene resistencia a la viruela. Si fuera liberado, podría sufrir una pérdida de vidas colosal antes de que el virus fuera controlado.

Acerca de alenfermeria

me gusta la enfermeria , uno de mis principales hobbies
Esta entrada fue publicada en Uncategorized. Guarda el enlace permanente.

Una respuesta a Fungi

  1. Pingback: Trabajos de Enfermeria AGN | Alenfermeria's Blog

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s